

Towards Generalised Parton Distributions at the Electron Ion Collider

Daria Sokhan

University of Glasgow, UK

Structure of the nucleon

What we would like to know

Electron scattering

Electromagnetic interaction: sensitive to distributions of charge and magnetisation — information on quark structure of the hadron at different energy scales.

Deep inelastic scattering (DIS):

Measurements:

- ★ Inclusive only the electron is detected.
- ★ Semi-inclusive electron and typically one hadron detected.
- ★ Exclusive all final state particles detected.
- ★ Polarised electrons / hadrons sensitivity to helicity distributions.
- ★ Cross-sections, cross-section differences and asymmetries.

Complementary information on the nucleon's structure.

Nucleon from different views: I

Wigner function: full phase space parton distribution of the nucleon

* Semi-inclusive DIS

Transverse
Momentum
Distributions
(TMDs)

Nucleon from different views: II

Nucleon from different views: II

Nucleon from different views: III

Generalised Parton Distributions (GPDs)

• relate transverse position of partons (b_{\perp}) to longitudinal momentum (x).

Nucleon from different views: III

Wigner function: full phase space parton distribution of the nucleon

Generalised Parton Distributions (GPDs)

• relate transverse position of partons (b_{\perp}) to longitudinal momentum (x).

* Deep exclusive reactions

Nucleon from different views: IV

Wigner function: full phase space parton distribution of the nucleon

Fourier Transform of electric Form Factor: transverse charge density of a nucleon

Generalised Parton Distributions (GPDs)

proton neutron

C. Carlson, M. Vanderhaeghen PRL 100, 032004 (2008)

Valence quarks

Jefferson Lab: fixed-target electron scattering

Valence quarks

Jefferson Lab: fixed-target electron scattering

$$0.1 < x_B < 0.7$$

Sea quarks

HERMES: fixed gas-target electron/positron scattering

$$0.02 < x_B < 0.3$$

Valence quarks

Jefferson Lab: fixed-target electron scattering

$$0.1 < x_B < 0.7$$

Sea quarks

HERMES: fixed gas-target electron/positron scattering

$$0.02 < x_B < 0.3$$

COMPASS: fixed-target muon scattering

$$0.006 < x_B < 0.3$$

Valence quarks

Jefferson Lab: fixed-target electron scattering

$$0.1 < x_B < 0.7$$

Sea quarks

HERMES: fixed gas-target electron/positron scattering

$$0.02 < x_B < 0.3$$

COMPASS: fixed-target muon scattering

$$0.006 < x_B < 0.3$$

Derek Leinweber

The glue

ZEUS/H1: electron/ positron-proton collider

$$10^{-4} < x_B < 0.02$$

Valence quarks

Jefferson Lab: fixed-target electron scattering

Sea quarks

HERMES: fixed gas-target electron/positron scattering

$$0.02 < x_B < 0.3$$

COMPASS: fixed-target muon scattering

$$0.006 < x_B < 0.3$$

Derek Leinweber

The glue

ZEUS/H1: electron/ positron-proton collider

$$10^{-4} < x_B < 0.02$$

EIC: $10^{-4} < x_B < 0.3$

What do GPDs tell us?

- * **Tomography** of the nucleon: transverse spacial distributions of quarks and gluons in longitudinal momentum space.
- * Small changes in nucleon transverse momentum allows mapping of transverse structure at large distances: **confinement**.
- * For additionally small *x* can image the pion cloud: chiral symmetry breaking.
- * Provide information on the orbital angular momentum contribution to nucleon spin: **the spin puzzle**.

* Using transversely polarised targets can map transverse shift of partons due to the polarisation: combine with TMDs to access **spin-orbit correlations** of quarks and gluons, study non-perturbative interactions of partons.

How to access **GPDs**

Experimental paths to GPDs

Accessible in *exclusive* reactions, where all final state particles are detected.

cliparts.co

Trodden paths, or ones starting to be explored:

- * Deeply Virtual Compton Scattering (DVCS)
- * Deeply Virtual Meson Production (DVMP)
- * Time-like Compton Scattering (TCS)
- * Double DVCS

DVCS

Deeply Virtual Compton Scattering

the "golden channel"

At high exchanged Q^2 and low t access to four GPDs:

$$E^q, \tilde{E}^q, H^q, \tilde{H}^q(x, \xi, t)$$

Can be related to PDFs:

$$H(x, 0, 0) = q(x)$$
 $\tilde{H}(x, 0, 0) = \Delta q(x)$

$$Q^2 = -(\mathbf{p}_e - \mathbf{p}_e')^2$$
 $t = (\mathbf{p}_n - \mathbf{p}_n')^2$

Bjorken variable: $x_B = \frac{Q^2}{2\mathbf{n} \cdot \mathbf{q}}$

$$x \pm \xi$$
 longitudinal momentum $\xi = \frac{x_B}{2 - x_B}$

and form factors:

$$\int_{-1}^{+1} H dx = F_1 \qquad \int_{-1}^{+1} \tilde{H} dx = G_A$$

$$\int_{-1}^{+1} E dx = F_2 \qquad \int_{-1}^{+1} \tilde{E} dx = G_P$$
(Dirac (axial and pseudo-scalar))

pseudo-scalar)

Measuring DVCS

* Process measured in experiment:

$$d\sigma \propto \left|T_{DVCS}\right|^2 + \left|T_{BH}\right|^2 + \left|T_{BH}T^*_{DVCS} + T_{DVCS}T^*_{BH}\right|^2$$
Amplitude Amplitude calculable Interference term

Amplitude parameterised in terms of Compton Form Factors

Amplitude calculable from elastic Form Factors and QED

 $\left|T_{DVCS}\right|^2 \ll \left|T_{BH}\right|^2$

Compton Form Factors in DVCS

Experimentally accessible in DVCS cross-sections and spin asymmetries, eg:

$$A_{LU} = \frac{d\vec{\sigma} - d\vec{\sigma}}{d\vec{\sigma} + d\vec{\sigma}} = \frac{\Delta \sigma_{LU}}{d\vec{\sigma} + d\vec{\sigma}}$$

$$T^{DVCS} \sim \int_{-1}^{+1} \frac{GPDs(x,\xi,t)}{x \pm \xi + i\varepsilon} dx + \dots \sim P \int_{-1}^{+1} \frac{GPDs(x,\xi,t)}{x \pm \xi} dx \pm i\pi GPDs(\pm \xi,\xi,t) + \dots$$

Only \xi and \tau accessible experimentally!

To get information on x need extensive measurements in Q^2 .

Need measurements off proton and neutron to get flavour separation of CFFs.

GPDs and the spin puzzle

* Total angular

* Total angular momentum of a nucleon:
$$J_N = \frac{1}{2} = \frac{1}{2} \Sigma_q + L_q + J_g$$

Only ~ 30% contribution

* Ji's relation:

$$J^q = \frac{1}{2} - J^g = \frac{1}{2} \int_{-1}^{1} x dx \left\{ H^q(x,\xi,0) + E^q(x,\xi,0) \right\}$$

- *Need measurements at low t, across wide Q^2 , of a range of observables to extract both H and E.
- *Need flavour separation of GPDs.

What should we measure?

Real parts of CFFs accessible in cross-sections and double polarisation asymmetries, imaginary parts of CFFs in single-spin asymmetries.

Beam, target polarisation

$$\xi = x_B/(2-x_B)$$
 $k = t/4M^2$

Proton

Neutron

$$\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_1 H + \xi (F_1 + F_2) \hat{H} - kF_2 E\} d\phi$$

$$\Delta\sigma_{\text{UL}} \sim \frac{\sin\phi}{\operatorname{Im}\{F_1H^2 + \xi(F_1 + F_2)(H + x_B/2E)} - \xi kF_2E^2 + \dots\} d\phi$$

$$Im\{H_p, H_p\}_{\sim}$$

$$Im\{H_n, E_n, E_n\}$$

$$e$$
 $\Delta \sigma_{\text{UT}} \sim \cos \phi \text{ Im} \{k(F_2 H - F_1 E) + \dots\} d\phi$

$$\Delta\sigma_{LL} \sim (\mathbf{A} + \mathbf{B}\cos\phi) \operatorname{Re}\{\mathbf{F}_1 H + \mathbf{\xi}(\mathbf{F}_1 + \mathbf{F}_2)\}$$

$$(H + \mathbf{x}_B/2E)...\} d\phi$$

$$\begin{array}{c}
Re\{H_{\mathbf{p}}, H_{\mathbf{p}}\} \\
Re\{H_{\mathbf{n}}, E_{\mathbf{n}}, E_{\mathbf{n}}\}
\end{array}$$

Deeply Virtual Meson Production

Enables flavour decomposition.

At high exchanged Q², access to four chiral-even (parton helicity conserving) GPDs:

$$E^q, \tilde{E}^q, H^q, \tilde{H}^q(x, \xi, t)$$

and four chiral-odd (parton helicity flipping) GPDs:

$$E_T^q, \tilde{E}_T^q, H_T^q, \tilde{H}_T^q(x, \xi, t)$$

Transversity GPDs can be related to transverse anomalous magnetic moment:

$$\kappa_T = \int_{-1}^{+1} \tilde{E}_T(x, \xi, t = 0) dx$$

and transversity distribution: $H_T(x, 0, 0) = h_1(x)$

which describes distribution of transverse partons in a transverse nucleon.

GPDs from DVCS in the valence region

CLAS cross-sections (JLab)

What do the CFFs from the cross-sections tell us?

* Slope in t becomes flatter at higher x_B

* Valence quarks at centre, sea quarks at the periphery.

H.-S. Jo et al (CLAS Collaboration), PRL 115 (2015) 212003

Beam- and target-spin asymmetries from CLAS

S. Pisano *et al* (CLAS Collaboration), *PRD* **91** (2015) 052014 E. Seder *et al* (CLAS Collaboration), *PRL* **114** (2015) 032001

Double-spin Asymmetry (A_{LL}) from CLAS

S. Pisano *et al* (CLAS Collaboration), *PRD* **91** (2015) 052014 E. Seder *et al* (CLAS Collaboration), *PRL* **114** (2015) 032001

* CFF extraction from three spin asymmetries at common kinematics.

What can we learn from the asymmetries?

Information about the relative spread of the axial and electric charges in the nucleon?

$$H^q(x,0,0) = f_1(x)$$

$$\tilde{H}^q(x,0,0) = g_1(x)$$

- E. Seder et al (CLAS Collaboration), **PRL 114** (2015) 032001
- S. Pisano et al (CLAS Collaboration), **PRD 91** (2015) 052014

Combining data from different experiments

Proton measurements from JLab and HERMES:

E.C. Aschenauer et al, **JHEP 1309** (2013) 093

Proton (HERMES) and neutron (Hall A, JLab)

DVCS measurements:

M. Mazouz et al, PRL 99 (2007) 242501

What have we learned in the valence region?

- * Factorisation and the handbag formalism can be used to describe DVCS at moderate Q^2 and small but finite t: a wide range of Q^2 , smaller t desirable.
- * Beam and target polarisation in experiment is crucial to extract different Compton Form Factors (we want polarised beams and targets!)
- * Very high statistics are required to differentiate between models and extract CFFs with high accuracy (we want high luminosity and full acceptance!)
- * Measurements on both proton and neutron are crucial to allow flavour separation of GPDs from DVCS.
- * Meson production provides a handle on flavour-separation, combined with DVCS points to universality of GPDs.

Tantalising views into nucleon structure... but we want to know more!

Measurements in the quark-gluon sea

Phase-space of DVCS measurements

EIC White Paper, arXiv:1212.1701v3 [nucl-ex]

GPD opportunities at the EIC: I

DVCS

- * Nucleon tomography at low x: sea quarks and gluons. Gluon distributions accessible via a log dependence of GPDs on Q^2 .
- * Access phase of the Compton amplitude through beam-charge asymmetry (using electron and positron beams) or Rosenbluth separation of cross-sections at different electron energies.

TCS

* Asymmetries carry similar information to beam-charge asymmetry in DVCS, without need for positron beams.

DVMP

- * Flavour-separation of contributions from q and \bar{q} and from gluons.
- * J/Ψ production direct access to gluon GPDs.
- * Vector meson production allows separation of cross-sections for longitudinal, σ_L , and transverse, σ_T , photon polarisation.
- * $\pi^+\pi^-$ production is sensitive to differences in q and \bar{q} distributions.

GPD opportunities at the EIC: II

DDVCS

* Direct access to *x*-dependence of GPDs.

Measurements on other hadrons

- * Could potentially measure DVCS/DVMP off the virtual pion.
- * Light nuclei (He, deuteron) allow measurements off the neutron: flavour separation of GPDs.
- * Nuclear DVCS /DVMP: tomography of the nucleus, parton saturation.
- * Scattering and J/Ψ -production off nuclei with multi-nucleon knockout: short-range correlations, contribution of glue.

Wide range of Q^2 in the valence region will complement valence measurements: can observe scaling violations.

The estimated EIC reach

for DVCS

for J/Ψ

EIC White Paper, arXiv:1212.1701v3 [nucl-ex]

What can we expect from the EIC?

- * Cross-sections and beam-charge asymmetries measured at H1 and ZEUS (HERA).
- * Sensitivity expected from inclusion of EIC data with HERA measurements:

Least-squares fit with dipole and exponential ansatz from HERA collider data with and without EIC simulated pseudo-data (unpolarised cross-sections and transverse target spin asymmetry produced with AFKM12 model) fitted with the exponential ansatz.

Sea quarks at the EIC

Simulations of transverse spatial quark distributions from DVCS cross-sections.

Simulated density of sea quarks in transverse plane from DVCS cross-sections and spin-asymmetries.

EIC White Paper arXiv:1212.1701v3 [nucl-ex]

Gluons at the EIC

Simulations of transverse spatial gluon distributions from J/Ψ production at different gluon momenta x_v .

EIC White Paper, arXiv:1212.1701v3 [nucl-ex]

DVCS beam-spin asymmetries at EIC

DVCS beam-spin asymmetries at EIC

To conclude...

- *** GPDs** present a form of **tomography** of the nucleon, carry information on the composition of its **spin** and on the non-perturbative aspects of nucleon structure and confinement.
- * Exclusive measurements from Jefferson Lab and HERMES provided validation of the GPD formalism and glimpses of nucleon structure in the **valence region**.
- * EIC is crucial in exploring nucleon structure at the level of **sea quarks and gluons**; it needs to have *high luminosity*, *high polarisations*, *full acceptance detectors*, *a range of CM energies and nucleon and nuclear targets*.
- * There is a strong theoretical and phenomenological effort in model development, data fitting and predictions across different kinematics crucial to inform and guide EIC design: e.g.: the **PARTONS** framework.
- * An exciting future for nucleon structure is opening with JLab @ 12 GeV and COMPASS II in the transition region and the EIC for the quark-gluon sea.

